ROOSEYELT ISLAND Southtown Building No. 5

Steven Stein

The Pennsylvania State University • Architectural Engineering Structural Emphasis • Advisor: Dr. Andres Lepage

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

> Introduction

□ Introduction

Existing Structure

Steven Stein

Problem Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

- 187' Luxury Condominium in NYC
- Located on Roosevelt Island in the East River
- Number 5 out of 9 new condos being built the Southtown development

> Introduction

Existing Structure

Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Problem

□ Introduction

- 130,000+ square feet
- **5**1million to build
 - 16 stories with a one story cellar below grade
 - 123 1,2 and 3 bedroom condominiums
 - Additional Amenities:
 - full service health club
 - children's day care center
 - green roof and private terraces

Steven Stein

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

Problem

Existing Structure

Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

- Existing Structure Gravity System
 - 9'-4" Floor-to-floor height (typ.)
 - 8" Reinforced Concrete Flat Plate (typ.)
 - f'c = 4ksi
 - Mild steel reinforcement in slabs
 - Staggered Bay Sizes
 - Rectangular Columns, various sizes and orientation

Conclusions

Steven Stein

✓ Introduction

Existing Structure

Problem Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

- Existing Structure Lateral System
 Reinforced Concrete Shear Walls
 Located around stairwell and elevator core
 Typically 12" wide
- Concrete varies in strength
 7ksi at cellar 5ksi at roof

Senior Thesis Presentations: Spring 2008

Steven Stein

✓ Introduction

Existing Structure

Problem Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Steven Stein

- Existing Structure Foundation
- Spread Footings under Gravity Columns
- 42" Mat Foundation used under Shear Walls
- 12" Foundation Wall used around the perimeter

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

Problem Statement

- Strict Height Restriction
 - New York City Zoning Regulations
 - 187' from the datum

Senior Thesis Presentations: Spring 2008

Statement/Proposal

Problem

Existing Structure

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

- Keep existing architecture consistent
 - New York State Urban Development Corporation
 - Masterplan developed by Philip Johnson and John Burgee

✓ Introduction

Proposal Goals

Existing Structure

Problem Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Redesign Structure using Girder-Slab Floor System and Braced Frame Lateral System

- Do not exceed 187'
- Maintain 9'-4" typical floor-to-floor height
- Stay as close to an 8" floor as possible

Design the building as environmentally friendly as possible.

Earn LEED certified rating

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - > Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

Existing Structure

✓ Problem Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Girder-Slab System for Typical Floors 2-16

 Floor System develops composite action through grouting

Steven Stein

DB8x42

8" Span

W18x50

W12x26

W12x26

Decl

. 00

DB8x42

W18x50

W8×15

Deck

Span

. 80

DB8x42

DB8x42

N14

DB8x42

DB8x42

DB8x42

pan

"co

V8×

DB8x42

DB8x42

W8x15

DB8x35

DB8x35

W8×15

DB8x42

✓ Introduction

Girder-Slab System for Typical Floors 2-16

W8x15

8" Span Deck

W8x15

DB8x42

W8x15

8" Span Deck

W8x15

W8x10

Deck

W8x10

42

W14x43

DB8x

W8x10

__8" Span Deck

R8v3

W8x10

W8x10

W8x10

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Steven Stein

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Composite Floor System for 1st Floor

- Design Considerations
 - Maintain same column grid
 - Resist increased Live Load of 100psf
 - Limit floor deflections to within L/360
- Design Method
 - Allowable Stress Design Method
 - RAM Structural System

✓ Introduction

Composite Floor System for 1st Floor

First Floor Framing Plan

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

- 3" normal weight concrete slab above
- 3/4 " shear studs

Steven Stein

✓ Introduction

Composite Floor System for 1st Floor

20 gauge USD 2" Lok-Floor Metal Deck

3" normal weight concrete slab above

First Floor Framing Plan

■ 3/4 " shear studs

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

 $I_x = 168in^4$ for beams $I_x = 497in^4$ for girders

Steven Stein

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

V Problem

Existing Structure

Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Gravity Columns

- Design Method
 - Allowable Stress Design
 - RAM Structural System
 - Spliced at every 4 floors

Steven Stein

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - ✓ Gravity Columns
 - > Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

Braced Frame Lateral System

- Design Considerations
- Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Keep consistent framing as gravity columns

- Do not disturb architectural plans
- Least intrusive as possible

Steven Stein

Existing Structure

Braced Frame Lateral System Lateral Loads Obtained from ASCE7-05

Wind Loads

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Classification Category: II

- Basic Wind Speed: 110 mph
- Exposure Category: C

Base Shear

- N-S = 908 kips
- E-W = 454 kips

Seismic Loads

Equivalent Lateral Force Method

- Seismic Design Category: B
- SDS = 0.363 SD1 = 0.112
- R = 3.25, concentric braced frames
- Base Shear = 406 kips

GROUND LEVE

GROUND LEVEL

Existing Structure

✓ Introduction

V Problem Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Steven Stein

✓ Introduction

V Problem

Existing Structure

Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Braced Frame Lateral System

- Members checked for Allowable Stress Design Load Combos
 - Member Code Check was performed in RAM
- Design of Frames controlled by H/400
- Iterative Process which consisted of increasing column and brace sizing

Steven Stein

✓ Introduction

Structural Recap

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

- Girder-Slab system achieves comparable floor thickness
- Composite floor system able to withstand increased live loads
- Braced Frames able to resist applied lateral loads

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - ✓ Composite Floor System for 1st Floor
 - ✓ Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

Cost and Schedule Breadth

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Comparison of material, labor, and erection costs
 RS Means 2007 Construction Cost Data
 Location Factory of 1.31 for New York City

Existing Concrete System				
Floor Slabs	\$2,036,000			
Columns	\$929,000			
Shear Walls	\$240,000			
Foundation Walls	\$76,000			
Spread Footings	\$10,900			
Mat Foundation	\$56,000			
	Total: \$3.347.900			

Girder-Slab system cost roughly \$1million more than CIP Concrete System

Proposed Girder Slab System					
Braced Frame Lateral System	893,300				
Composite Floor 1	140,000				
Girder-Slab Floors 2-16	1,928,000				
Columns	500,000				
Erection Costs	354,600				
Spandrel Beams	108,000				
Fireproofing	259,000				
Foundation Walls	75,500				
Spread Footings	10,900				
Mat Foundation	56,100				
	Total: \$4,325,400				

✓ Introduction

Cost and Schedule Breadth

Blue represents CIP Concrete System: Typical Floor takes 3 days

Red represents Girder-Slab System: Typical Floor Takes 1-2 days

Existing Structure

Structural Redesign

LEED Design and Sustainability

✓ Introduction

Cost and Schedule Breadth

Existing Structure

Problem
 Statement/Proposal

✓ Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Erection of Girder-Slab System: 80 Working Days Erection of Cast-in-Place System: 122 Working Days

Save 42 Working Days = Over 2 Months Total

Steven Stein

✓ Introduction

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

Cost & Schedule

LEED Design and Sustainability

Conclusions

Cost and Schedule Breadth Recap

- Girder-Slab System costs approx. \$1 million more than existing CIP Structure
- Girder-Slab System can be erected approx. 2 months quicker than existing CIP Structure
- Owner would generate more revenue by interest gains and less money to pay back in construction loans

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - ✓ Composite Floor System for 1st Floor
 - ✓ Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

✓ Introduction

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

✓ Cost & Schedule

LEED Design and Sustainability

Conclusions

- LEED Design and Sustainability Breadth
 - Sustainable Site 9 Credits
 - Additional 2000 sq. ft. of vegetative roof
 - Site located only 30 ft. from river
 - Water Efficiency 5 Credits
 - Wastewater treatment system treats 100% of building wastewater
 - Stormwater storage tank used for irregation needs
 - Low-flow appliances and fixtures
 - Energy and Atmosphere 3 Credits
 - Energy-10 model created
 - PTAC units vs. Air Source Heat Pump
 - 18% Energy Reduction per floor

- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign
 - Girder-Slab System for Typical Floors
 - Composite Floor System for 1st Floor
 - ✓ Gravity Columns
 - Braced Frame Lateral System
- Cost & Schedule
- LEED Design and Sustainability
- Conclusions

Conclusions and Recommendations

✓ Introduction

Existing Structure

Problem
 Statement/Proposal

Structural Redesign

V Cost & Schedule

 LEED Design and Sustainability

> Conclusions

Use Existing Cast-in-Place Concrete System
 New York City's concrete workers are very efficient
 Use of multiple unions for G-S system would be more strenuous
 Job site could become cluttered with multiple unions

Less money to build

Steven Stein Engineer of record

 Introduction 		
 Existing Structure 		
✓ Problem Statement/Proposal		Questions?
✓ Structural Redesign		
✔ Cost & Schedule		
✓ LEED Design and Sustainability		
✓ Conclusions	Steven Stein	Senior The

✓ Introduction

✓ Problem

Existing Structure

Statement/Proposal

Structural Redesign

Cost & Schedule

 LEED Design and Sustainability

Footing Redesign

- Original Interior Footing:
 - Large Mat around core
 - 13 interior CIP columns
 - 4'-6" Square Footing, 30" thick, (8) #8 bars each direction
 - 1.9 cubic yards per footing
- Redesigned Footing:
 - Smaller Mat Around Core + Spread Footings under Lateral Frames
 - 6 interior steel columns
 - 6'-0" Square Footing, 26" thick, (9) #6 bars each direction
 - 2.9 cubic yards per footing

✓ Conclusions

Steven Stein

✓ Introduction

□ Footing Redesign

✓ Structural Redesign

✓ Cost & Schedule

✓ LEED Design and Sustainability

Conclusions

Steven Stein